Infrastructure and Regional Cooperation

Haruhiko Kuroda
Masahiro Kawai
Rita Nangia
Asian Development Bank

Annual Bank Conference on Development Economics
Tokyo 2006

This is a revised version of the paper presented to the Annual Bank Conference on Development Economics (ABCDE), Tokyo, May 2006. The authors would like to thank David Green, Frank Harrigan, Peter McCawley, Sudipto Mundle, Rajat Nag, and two anonymous referees for their comments on earlier versions. Guy Sacerdoti provided editorial assistance. The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the Asian Development Bank (ADB), or its Board of Directors, or the governments they represent.
Contents

I. The Context

- Asia’s Trade, Investment, and Production Networks 2
- Logistics, Infrastructure, and Software 7
- Cross-border Infrastructure and Economic Development 10

II. Lessons from Major Cross-Border Infrastructure in Asia

- GMS Northern Economic Corridor and Trade and Transit Harmonization 14
- Nam Theun 2 Hydropower Project 16
- Pacific Cooperation for Aviation and ICT 17
- Indonesia–Singapore Gas Transmission 18
- Lessons Learned 19

III. A Framework for Cross-Border Infrastructure

- Political 21
- Economic and Financial 22
- Institutional and Software 23

IV. Conclusion: The Future of Cross-Border Infrastructure in Asia

- Governments 26
- Private Sector 27
- Civil Society Organizations 27
- Multilateral Institutions 28

References

30

Boxes

1. Regional Trade Expansion and its Impact on the Logistics 8
2. Infrastructure and Economic Development 11
3. Cross-Border Infrastructure - A Historical Perspective 13

Tables

1. Trends in Intraregional Trade 3
2. Foreign Direct Investments Stocks as % of Gross Domestic Product 4
3. Trends in Logistics Costs 7
Infrastructure and Regional Cooperation

As late as 1750, Asia occupied an important position in the global economy not only in terms of population and production, but also trade, capital formation, productivity, and competitiveness (Sakakibara & Yamakawa 2003). Data show that during the 15th–17th centuries, Asia played a key role in ensuring global division of labor. Intra-Asian trade was well developed long before Europeans arrived in the region and such trade involved exclusively Asian ships, Asian merchants, and Asian goods. Several Japanese historians claim that the economic growth of Asian countries was led by intra-Asian trade (Akita 1999) and that the economic success of Japan in the late 20th century, as well as that of the newly-industrialized economies (NIEs), originated in this intra-Asian trade (Sugihara 1990). Asians developed capabilities to adapt western cultural elements to suit Asian domestic markets, such as making things smaller and cheaper or neater and cleaner.

The focus of most of the analytic work on regional cooperation has been on trade and investment, including issues such as tariff and nontariff barriers to trade and foreign direct investment (FDI). With the emergence of global and regional production networks, aspects of transport and logistics have begun to attract greater attention of policy makers, academics, and experts. This paper focuses on the role of cross-border infrastructure in the process of regional integration in developing Asia. Cross-border infrastructure is defined as any international infrastructure cooperation initiative between two or more countries to strengthen cross-border connectivity.

The paper is organized as follows. Section I sets the context: it presents Asia’s phenomenal growth in trade and investment in the last two and half decades. It describes how Asia—particularly East Asia—has become a dominant part of international production networks and supply chains. So far, barring a few examples from the Greater Mekong Subregion (GMS), efforts to improve the region’s connectivity have mostly been made through national infrastructure projects and national policy actions. This approach has so far worked, but is likely to be inadequate given the prospects of continued rapid growth in Asian economic activity,

1 Asia in the modern age includes: People’s Republic of China, India, Japan, and key Southeast Asian economies.
investment, and trade. The paper argues that the needs for reducing transport and logistics costs, developing economic agglomeration and connecting production clusters and markets will be key drivers of demand for cross-border infrastructure in Asia over the next few decades. Addressing the region’s logistics challenges will hence require attention to cross-border infrastructure.

Section II reviews four case studies of cross-border infrastructure in Asia. This exercise reveals that most cross-border infrastructure projects and programs are very complex, and that there is a need for a comprehensive framework to deal with inherent challenges facing cross-border infrastructure. Section III offers a conceptual framework to address political, economic and financial, and institutional challenges for cross-border infrastructure development. It emphasizes that the “software” component is inseparable from the “hardware” component if actual cross-border connectivity is to be improved. Section IV identifies key actions that need to be taken by various stakeholders—such as the Asian governments, the private sector, civil society organizations, and multilateral institutions like the Asian Development Bank (ADB)—in connecting Asia.

I. The Context

Asia’s Trade, Investment, and Production Networks

Developing Asia’s economic performance in the last few decades has been impressive. As a group, the region has grown at an average rate of 7% since 1980. Poverty has declined rapidly: there were 300 million fewer people living in poverty in 2003 compared with 1990 (ADB 2005). Strong growth of exports and foreign direct investments has been an important driver for most Asian economies.

Trade, investment, and regional integration. Over the past 20+ years, developing Asia’s exports to the world have grown at the rate of 12.5% per annum—or from a level of $162 billion in 1980 to $2.3 trillion in 2005. The region now accounts for a quarter of world exports. In recent years, this strong export growth has been marked by a rapid increase in intraregional trade, with its share rising from 35% in 1980 to 55% in 2005 if Japan is included, and from 22% to

2 Developing Asia refers to all 43 developing member countries of the Asian Development Bank.
3 Computation based on the data on direction of trade, International Monetary Fund, 2006.
45% excluding Japan. This share is higher than in the North American Free Trade Agreement (NAFTA) region, although it remains somewhat lower compared with the European Union (Table 1).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>East Asia (incl. Japan)</td>
<td>34.6</td>
<td>37.1</td>
<td>43.0</td>
<td>51.7</td>
<td>51.9</td>
<td>51.5</td>
<td>53.4</td>
<td>54.5</td>
<td>55.1</td>
<td>54.5</td>
</tr>
<tr>
<td>Emerging East Asia</td>
<td>22.1</td>
<td>27.5</td>
<td>32.8</td>
<td>39.0</td>
<td>40.4</td>
<td>40.7</td>
<td>43.0</td>
<td>43.7</td>
<td>44.1</td>
<td>44.7</td>
</tr>
<tr>
<td>Asian NIEs</td>
<td>6.4</td>
<td>6.5</td>
<td>11.9</td>
<td>15.5</td>
<td>15.5</td>
<td>14.9</td>
<td>15.5</td>
<td>15.0</td>
<td>14.4</td>
<td>13.5</td>
</tr>
<tr>
<td>ASEAN</td>
<td>17.9</td>
<td>20.3</td>
<td>18.8</td>
<td>23.9</td>
<td>24.5</td>
<td>23.9</td>
<td>24.3</td>
<td>23.8</td>
<td>23.8</td>
<td>24.0</td>
</tr>
<tr>
<td>NAFTA</td>
<td>33.8</td>
<td>38.7</td>
<td>37.9</td>
<td>43.1</td>
<td>48.8</td>
<td>49.1</td>
<td>48.4</td>
<td>47.3</td>
<td>46.4</td>
<td>45.0</td>
</tr>
<tr>
<td>European Union-15</td>
<td>60.7</td>
<td>59.8</td>
<td>66.2</td>
<td>64.2</td>
<td>62.3</td>
<td>62.2</td>
<td>62.5</td>
<td>63.0</td>
<td>62.2</td>
<td>60.1</td>
</tr>
</tbody>
</table>

Intraregional trade as share of total trade. Source: Kawai 2006.

The initial growth in trade that was sparked by Asia’s newly-industrialized economies (NIEs)—Republic of Korea (Korea); Hong Kong, China; Taipei, China; and Singapore—and then by the middle-income Association of Southeast Asian Nations (ASEAN) members has continued with the People’s Republic of China (PRC) becoming an important player in regional and global trade. As a result of its robust trade growth, the PRC now accounts for 30% of regional trade. More recently, there has been a surge in Asian trade from other exporters such as India and Viet Nam.

Much of this is due to rapid trade liberalization in these economies since the 1980s—particularly in the 1990s and beyond—within the WTO and APEC frameworks. Most economies not only reduced tariffs and nontariff barriers but also simplified customs rules and regulations (Dollar & Kraay 2001). Notable is the fact that the expansion of East Asian trade has been accompanied by a rapid rise in FDI, reflecting liberalization of FDI regimes in the region’s economies and multinational corporations’ global strategies. Multinational corporations began to establish production networks across East Asia through FDI—generating trade in capital goods, parts, components, semifinished and finished manufactures across East Asia.

4 East Asia includes 15 economies including the 10 ASEAN members (Brunei Darussalam, Cambodia, Indonesia, Lao People’s Democratic Republic, Malaysia, Myanmar, Philippines, Singapore, Thailand, and Viet Nam); the PRC: Hong Kong, China; South Korea; Taipei, China; and Japan. Emerging East Asia excludes Japan.
FDI inflows to developing Asia rose more than 28 times in the 25 years 1980–2005. In 2005, East Asian economies accounted for over 59% of all FDI inflows in developing economies (UNCTAD 2006). Today, one of the most important destinations of FDI remains the PRC—from a meagre $57 million in FDI in 1980, the PRC attracted over $60 billion in 2005. In addition, countries such as Viet Nam and Cambodia are also beginning to attract FDI (Table 2). Most FDI in Asia has been in new, greenfield investments concentrated in manufacturing, though there has also been an increase in cross-border mergers and acquisitions, largely in services.

Table 2: Foreign Direct Investment Stocks (% of Gross Domestic Product)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Japan</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.6</td>
<td>1.1</td>
<td>1.2</td>
<td>2.0</td>
<td>2.1</td>
<td>2.1</td>
<td>2.2</td>
</tr>
<tr>
<td>Outward</td>
<td>1.8</td>
<td>3.2</td>
<td>6.6</td>
<td>4.5</td>
<td>5.8</td>
<td>7.2</td>
<td>7.6</td>
<td>7.8</td>
<td>7.9</td>
<td>8.5</td>
</tr>
<tr>
<td>Korea, Rep. of</td>
<td>2.1</td>
<td>2.3</td>
<td>2.1</td>
<td>1.9</td>
<td>8.1</td>
<td>9.6</td>
<td>9.2</td>
<td>9.0</td>
<td>8.1</td>
<td>8.0</td>
</tr>
<tr>
<td>Inward</td>
<td>0.2</td>
<td>0.5</td>
<td>0.9</td>
<td>2.1</td>
<td>5.8</td>
<td>6.8</td>
<td>6.5</td>
<td>6.5</td>
<td>5.8</td>
<td>4.6</td>
</tr>
<tr>
<td>Outward</td>
<td>0.4</td>
<td>2.0</td>
<td>5.4</td>
<td>14.4</td>
<td>17.9</td>
<td>17.5</td>
<td>17.1</td>
<td>16.2</td>
<td>14.9</td>
<td>14.3</td>
</tr>
<tr>
<td>China, People’s</td>
<td>0.4</td>
<td>0.3</td>
<td>1.2</td>
<td>2.5</td>
<td>2.6</td>
<td>3.0</td>
<td>2.9</td>
<td>2.6</td>
<td>2.4</td>
<td>2.1</td>
</tr>
<tr>
<td>Rep. of</td>
<td>0.4</td>
<td>2.0</td>
<td>5.4</td>
<td>14.4</td>
<td>17.9</td>
<td>17.5</td>
<td>17.1</td>
<td>16.2</td>
<td>14.9</td>
<td>14.3</td>
</tr>
<tr>
<td>Hong Kong, China</td>
<td>73.2</td>
<td>75.2</td>
<td>59.4</td>
<td>50.1</td>
<td>275.4</td>
<td>257.5</td>
<td>208.2</td>
<td>239.2</td>
<td>277.6</td>
<td>299.9</td>
</tr>
<tr>
<td>Inward</td>
<td>0.5</td>
<td>6.6</td>
<td>15.7</td>
<td>55.6</td>
<td>234.9</td>
<td>216.5</td>
<td>191.6</td>
<td>213.0</td>
<td>246.5</td>
<td>264.7</td>
</tr>
<tr>
<td>Outward</td>
<td>5.8</td>
<td>4.7</td>
<td>6.1</td>
<td>5.9</td>
<td>5.7</td>
<td>13.5</td>
<td>10.0</td>
<td>13.0</td>
<td>12.8</td>
<td>12.1</td>
</tr>
<tr>
<td>Singapore</td>
<td>31.4</td>
<td>21.4</td>
<td>19.0</td>
<td>16.1</td>
<td>21.5</td>
<td>25.2</td>
<td>27.3</td>
<td>29.3</td>
<td>29.9</td>
<td>28.1</td>
</tr>
<tr>
<td>Inward</td>
<td>52.9</td>
<td>73.6</td>
<td>82.6</td>
<td>78.2</td>
<td>123.1</td>
<td>143.1</td>
<td>157.3</td>
<td>160.2</td>
<td>150.2</td>
<td>158.6</td>
</tr>
<tr>
<td>Outward</td>
<td>31.7</td>
<td>24.8</td>
<td>21.2</td>
<td>41.8</td>
<td>62.1</td>
<td>85.1</td>
<td>98.6</td>
<td>100.1</td>
<td>94.5</td>
<td>94.1</td>
</tr>
<tr>
<td>Brunei Darussalam</td>
<td>0.4</td>
<td>0.8</td>
<td>1.1</td>
<td>12.4</td>
<td>89.8</td>
<td>106.0</td>
<td>127.0</td>
<td>161.0</td>
<td>135.9</td>
<td>145.2</td>
</tr>
<tr>
<td>Inward</td>
<td>0.4</td>
<td>0.8</td>
<td>1.1</td>
<td>12.4</td>
<td>89.8</td>
<td>106.0</td>
<td>127.0</td>
<td>161.0</td>
<td>135.9</td>
<td>145.2</td>
</tr>
<tr>
<td>Outward</td>
<td>6.3</td>
<td>10.3</td>
<td>11.0</td>
<td>11.3</td>
<td>10.4</td>
<td>8.7</td>
<td>8.7</td>
<td>8.7</td>
<td>8.7</td>
<td>8.7</td>
</tr>
<tr>
<td>Malaysia</td>
<td>21.1</td>
<td>23.7</td>
<td>23.4</td>
<td>32.3</td>
<td>58.6</td>
<td>38.6</td>
<td>38.9</td>
<td>40.4</td>
<td>39.3</td>
<td>36.5</td>
</tr>
<tr>
<td>Inward</td>
<td>0.8</td>
<td>4.4</td>
<td>6.1</td>
<td>12.4</td>
<td>23.6</td>
<td>9.5</td>
<td>10.7</td>
<td>11.4</td>
<td>11.7</td>
<td>34.0</td>
</tr>
<tr>
<td>Outward</td>
<td>3.0</td>
<td>5.1</td>
<td>9.7</td>
<td>10.5</td>
<td>24.4</td>
<td>28.9</td>
<td>30.1</td>
<td>33.3</td>
<td>29.7</td>
<td>33.5</td>
</tr>
<tr>
<td>Thailand</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>1.4</td>
<td>1.8</td>
<td>2.3</td>
<td>2.0</td>
<td>2.1</td>
<td>2.1</td>
<td>2.3</td>
</tr>
<tr>
<td>Inward</td>
<td>3.9</td>
<td>8.5</td>
<td>7.4</td>
<td>8.2</td>
<td>16.9</td>
<td>14.5</td>
<td>15.3</td>
<td>15.2</td>
<td>14.9</td>
<td>14.4</td>
</tr>
<tr>
<td>Outward</td>
<td>0.5</td>
<td>0.6</td>
<td>0.3</td>
<td>1.6</td>
<td>2.1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.5</td>
<td>1.9</td>
<td>2.1</td>
</tr>
<tr>
<td>Philippines</td>
<td>6.5</td>
<td>6.7</td>
<td>7.7</td>
<td>10.2</td>
<td>16.5</td>
<td>10.8</td>
<td>4.1</td>
<td>5.0</td>
<td>4.4</td>
<td>7.7</td>
</tr>
<tr>
<td>Inward</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
<td>2.9</td>
<td>4.6</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>***</td>
<td>5.0</td>
</tr>
<tr>
<td>Outward</td>
<td>32.9</td>
<td>24.8</td>
<td>25.5</td>
<td>34.5</td>
<td>65.7</td>
<td>69.9</td>
<td>73.7</td>
<td>71.8</td>
<td>66.3</td>
<td>61.2</td>
</tr>
<tr>
<td>Viet Nam</td>
<td>1.8</td>
<td>1.6</td>
<td>2.2</td>
<td>10.8</td>
<td>46.9</td>
<td>50.7</td>
<td>50.9</td>
<td>49.9</td>
<td>47.2</td>
<td>45.6</td>
</tr>
<tr>
<td>Inward</td>
<td>0.3</td>
<td>0.0</td>
<td>1.5</td>
<td>11.9</td>
<td>32.1</td>
<td>33.1</td>
<td>33.1</td>
<td>30.6</td>
<td>26.6</td>
<td>24.5</td>
</tr>
<tr>
<td>Cambodia</td>
<td>0.3</td>
<td>0.0</td>
<td>1.5</td>
<td>11.9</td>
<td>32.1</td>
<td>33.1</td>
<td>33.1</td>
<td>30.6</td>
<td>26.6</td>
<td>24.5</td>
</tr>
<tr>
<td>Lao PDR</td>
<td>0.3</td>
<td>0.0</td>
<td>1.5</td>
<td>11.9</td>
<td>32.1</td>
<td>33.1</td>
<td>33.1</td>
<td>30.6</td>
<td>26.6</td>
<td>24.5</td>
</tr>
<tr>
<td>Myanmar</td>
<td>0.0</td>
<td>0.0</td>
<td>1.6</td>
<td>5.3</td>
<td>9.3</td>
<td>8.1</td>
<td>7.6</td>
<td>7.8</td>
<td>7.9</td>
<td>43.6</td>
</tr>
</tbody>
</table>

The United States (US), European Union (EU), and Japan have been active developed country investors in East Asia, forming production networks and supply chains. In the last 15 years, the four Asian NIEs have emerged as important sources of FDI in ASEAN and the PRC. For example, Hong Kong, China is the largest investor in the PRC. More recently, middle-income ASEAN countries—such as Malaysia and Thailand—have actively invested in low-income ASEAN members and the PRC. A web of FDI activities by global multinational corporations and regional firms, together with advances in information and communications technologies, have led to the growth of regional production networks and well-functioning supply chains in such sectors as textiles, electronics, and automobile parts.5 A key contributor to Asia’s industrial upgrading has been the participation of local enterprises in regional networks set up by multinational firms. Through their roles as suppliers of parts and components, and as purchasers of specialized processing equipment, these local firms gain access to important production technology, process and management know-how, and global distribution systems. Thus, East Asia has been able to create a virtuous cycle of regional trade and investment through the medium of production networks (UNCTAD 2005a).

Regional economic integration through market forces. It is now recognized that there is no unique or single, “correct” way to integrate economies with global and regional markets as the speed and the primary drivers of integration vary across regions. The early architects of the EU saw economic interdependence—rather than military coordination—as the most important factor for political cooperation. EU member countries sought to create a single market by policy-driven convergence of market rules. Strong regional institutions were created and granted powers in fields such as education, health, taxation, labor, employment, and transportation. Private sector activities—trade and investment—helped, but it was really the governments and their economic policies that drove the integration process in Europe. Creation of supranational institutions deepened this process further.

East Asia’s integration also started with the formation of regional institutions—ASEAN being one of the most important ones. The organization has, however, remained relatively weak: the political will that was so important in European integration was not present in the support provided to ASEAN by its members because of their inherent preference for national sovereignty.

5 The discussion on production networks draws on Carruthers et al 2003; Fujita and Hisa 2004; and Kawai 2005.
Compared with Europe, Asian economies had very different levels of economic development in terms of per capita incomes, industrial structures, market infrastructures, institutional and human capacities, and governance standards. As a result, Asia has not chosen to establish strong regional institutions driving the integration process. East Asian integration has largely been private sector-driven, assisted by strong market forces in trade and investment. This integration was strengthened by multinational corporations and Asian business houses, without much direct institutional support from regional governments.6

This market-driven integration has added pressures to distribution structures requiring complex logistics services. Rising demand for logistics is changing the conventional perspective of comparative advantage, implying that logistics and transportation are more closely integrated with supply chains than previously thought. What seems evident from the East Asian experience is that not only does a combination of abundant skilled labor, capital investment, and advanced technology determine the sustainability of decentralized production systems, but so does transportation and logistics support. Most East Asian economies invested significant amounts of resources in industrial and social infrastructure to improve connectivity within networks and with external markets—which such decentralized production systems demanded. These responses were largely focused on improving the national connectivity with foreign partners to serve the needs of outward-oriented industrialization.

Logistics, Infrastructure, and Software

Logistics costs as barriers to trade. Several complex factors determine overall transport and logistics costs. In the US, between 1950 and 1980, for example, average transit time fell from 40 days to about 10 days—one of the important factors leading to the reduced logistics cost (Rodrigues et al 2005). Table 3 presents global trends in logistics costs—technological advances have reduced overall costs for the US, but not for Europe, PRC, or India. In the PRC and India, in particular, land transport costs remain quite high due to inadequate national transport and communications infrastructure, uncompetitive transport and logistics sectors, and high fuel costs.

6 East Asian exporters have thus made broad-based gains in competitiveness in local markets against many major non-regional suppliers (ADB 2003).
Developing countries have yet to create efficient multimodal transportation networks\(^7\) and significantly improve the efficiency of existing road or rail systems. Unlike tariff and other trade barriers, domestic transport and logistics costs—key determinants of where production activities gravitate—vary widely across countries. Given these costs of logistics, a number of developing countries in Asia are actually closer to industrial countries in terms of economic distance than their regional neighbors.

For example, the deficiencies of Central Asian transport systems—high costs coupled with the low quality of transport and logistics services—have meant that 16–19% of the total value of exports and imports is absorbed by transport costs.\(^8\) In particular, the cost and availability of transport permits and visas for vehicle operators to travel cross-border are a major barrier in Central Asia, hampering regional connectivity—it can cost as much as $400 for a driver from a non-Commonwealth of Independent States (CIS) country to enter Uzbekistan, in addition to various other charges such as road taxes, axel load charges, insurance, and visa charges.\(^9\) A multi-country study shows that a 20% reduction in logistics costs would increase the trade to gross domestic product (GDP) ratio by more than 10% in Cambodia, Lao People’s Democratic Republic (Lao PDR), and the PRC; by more than 15% in Mongolia; and by more than 20% in Papua New Guinea (Carruthers & Bajpai 2002).

Table 3: Trends in Logistics Costs

<table>
<thead>
<tr>
<th>Economy</th>
<th>1997</th>
<th>% of GDP</th>
<th>2000</th>
<th>% of GDP</th>
<th>2002</th>
<th>% of GDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>$1,035</td>
<td>11.0%</td>
<td>$1,240</td>
<td>10.6%</td>
<td>$1,203</td>
<td>9.9%</td>
</tr>
<tr>
<td>Europe</td>
<td>884</td>
<td>12.2%</td>
<td>1,100</td>
<td>12.8%</td>
<td>1,229</td>
<td>13.3%</td>
</tr>
<tr>
<td>China, People’s Rep. of</td>
<td>718</td>
<td>16.9%</td>
<td>975</td>
<td>17.7%</td>
<td>1,052</td>
<td>17.9%</td>
</tr>
<tr>
<td>India</td>
<td>236</td>
<td>15.4%</td>
<td>433</td>
<td>17.0%</td>
<td>487</td>
<td>17.4%</td>
</tr>
</tbody>
</table>

Source: Rodrigues et al (2005).

\(^7\) In efficient multimodal transportation networks, goods move from one mode of transport to another seamlessly, without storage or human handling in between.

\(^8\) A recent study (ADB 2006c) indicates that regional cooperation in trade, transport, and customs transit in the Kyrgyz Republic would yield a potential cumulative gain for the period 2006–2015 amounting to $2.1 billion at 2002 prices.

\(^9\) Actual transport costs and time are often much higher than the “ideal world” costs (UNDP 2005b). The “ideal world” condition is based on balanced transport flows, competitive markets for transport services, smooth border crossings, low transit fees, and no visa problems or unofficial payments.
So far, these costs have not affected the overall competitiveness of Asian products, because some production clusters are located near ports and in coastal areas. This will become a major challenge in the years to come when manufacturing firms need to move inland due to congestion and other factors. It is estimated that in the PRC, inland provinces such as Shaanxi would have to incur additional land transportation costs of over $1,500 per 20-foot equivalent unit (TEU) of electronic goods to Qingdao port for exports. Though no comprehensive databases are available on the land transport costs of traded goods, several studies provide location-specific information. Almost 63% of the cost of transporting goods from Chongqing in the PRC to the west coast of the US is incurred before arriving at the PRC port for export (Carruthers & Bajpai 2002).

Asia’s cross-border infrastructure and software. Given these logistics and transport challenges, there is potential for improving regional cross-border infrastructure to reinforce regional production and trade. Most of the initial production networks were supported by national governments that invested in building national infrastructure in their countries with appropriate port linkages to the global and regional economy. The East Asian economies—the NIEs, middle-income ASEAN countries, and more recently the PRC and Viet Nam—have invested significant capital resources, building necessary national infrastructure to support these production networks. These networks have enjoyed an initial comparative advantage, but this is not guaranteed as the efficiency of East Asia’s logistics lags behind (ADB et al 2005). Overall quality and quantity of infrastructure in Indonesia, Philippines, Thailand, and to some extent

Box 1: Regional Trade Expansion and its Impact on the Logistics

During the 1960s and 1970s, the Republic of Korea (Korea) had one of the most competitive manufacturing sectors based on cheap and highly-skilled labor. However, as labor costs increased, Korea gradually lost its international competitiveness. With the emergence of the People’s Republic of China (PRC) as a dominant low-cost producer with strong logistics systems, some of Korea’s manufacturing-based industries shifted to the PRC. From a small base of US$42 million in FDI in 1991, the PRC accounted for nearly 38% of all Korean FDI outflows (US$2.2 billion) in 2004. Several vertically-integrated production networks were created. South Korean enterprises attempted to retain as much as possible high value-added activities locally and as a result there was a significant impact on the freight flows between the PRC and Korea. The PRC, which accounted for only 2.9% of Korean trade in 1991, became the most important trade partner in 2004 with 16.6% of Korean trade.

Given its geographical proximity, the Yellow Sea Rim area became one of the most important components of bilateral supply chains. Container throughput for the Yellow Sea ports (Qiangdao, Tianjin, and Dalian) increased more than 15 times in 1990–2003—this trend is significant compared with global flows that increased only 1.7 times. Korean port throughput also increased 5.4 times as a result of regional trade and PRC transshipment at Korean ports. In 2000, a regionally specialized container shipping service started and by 2003, a total of six freight-only lines created a logistics network to cater to regional trade. This regional network of Yellow Sea ports increased its share of trade, from 22.6% in 1994 to 32.2% in 2004. This, along with several other similar examples, indicates that regional connectivity and logistics improvements have been largely handled within a bilateral structure of trade and production networks.

Source: Lee & Rodrigue 2006.
Malaysia may already be inadequate compared with the requirements to remain competitive. With differing factor prices, technology levels, workforce capabilities, and logistics costs, most global investors will have much wider choices regarding location of future production clusters or expanding existing ones.

Against this background, it is possible to reinforce the region’s competitiveness through regional cooperation for cross-border infrastructure because East Asian economies are still complementary. Arndt (2001) states, “The basic idea is to think of the region rather than the nation as the production base and to spread component production around the region in accordance with comparative advantage.” Regional connectivity through cross-border infrastructure will be crucial in this case because it supports complementarities in production across the entire region, going beyond national boundaries. Other parts of Asia—South Asia, Central Asia, and the Pacific—all lack national and cross-border infrastructure even more than East Asia. The need to reduce transport and logistics costs, connecting production clusters around different countries, and linking these clusters with markets will be a major challenge for many developing countries in Asia in the next few decades.

In discussing infrastructure projects, it is important to focus on both “hardware” and “software” components. Several surveys and benchmarking studies indicate that hard infrastructure facilities are only a part of overall determinants of cross-border connectivity, and that the so-called “software” needs to be addressed to promote the smooth flow of people, services, and goods. “Software” aspects referred to here include legal, regulatory, procedural, and other supporting policy frameworks as well as human and institutional capacities, whereas “hardware” refers to physical infrastructure components that facilitate physical connectivity. For example, for the power sector, transmission lines and power plants would be “hardware” whereas regulatory frameworks, tariff policies, power-trading agreements (grid code, settlement code, security, planning, and maintenance, among others), and harmonization of rules and regulations would fall under “software” aspects. Similarly, a physical, cross-border transport

network is considered “hardware,” whereas setting tolls, facilitating customs, and harmonizing trade and transit rules along with other procedures and standards are the “software” aspects of the infrastructure. Essentially, cross-border physical infrastructure can promote movement of people, goods, services, and information only if accompanied by supporting “software” components that address various types of impediments related to policies, regulations, procedures, and standards.

An analysis of trade facilitation measures involving 75 developed and developing countries around the world concludes that if countries currently below the group average in relevant indicators individually cut their deficits to the mean by only 50%, total trade among the 75 would expand by 9.7%, or by US$377 billion (Wilson et al 2004). Initiatives involving customs and trade facilitation can remove procedural barriers to the cross-border movement of people and goods, thereby increasing efficiency, reducing transport costs, and maximizing the economic benefits of cross-border infrastructure. In this sense the infrastructure “software” component is inseparable from the “hardware” component.

Cross-border Infrastructure and Economic Development

Infrastructure investment has been the bedrock of national economic development plans in many economies. National infrastructure projects—for example, transport, energy, and telecommunications—are essential in connecting various production clusters and markets within a country, thereby helping integrate the national economy. In particular, transport infrastructure has long been considered critical due to its impact on enlarging markets. In addition, good urban and rural infrastructure is now considered a major contributor to economic development in many developing economies. In most developing economies, inadequate and unstable power supply, inefficient transport systems, poor quality roads, weak and aged railroad systems, badly-

11 Canals and railroads in the US opened up new areas promoting economic growth through regional specialization depending on the comparative advantage of each region. Governments (national and subnational) played an active role during 1790–1840 funneling large amounts of foreign and domestic investments into infrastructure projects (Wallis 2000). Europe saw a major expansion of its infrastructure network by way of railway links, telegraph lines, electricity and cables, gas and water works in the 19th century, followed by telephone lines and tramways at the turn of the 20th century. Most of these were seen as technological innovations in terms of new services. Japan spent considerable resources to build infrastructure prior to World War II, but it is really the efforts after the war that set an example for other East Asian economies by allocating 6–8% of GDP toward infrastructure development. Other economies like Korea; Taipei, China; Hong Kong, China; Malaysia; and Singapore followed this lead with similar investment levels (Mody 1997).
Box 2: Infrastructure and Economic Development

If one looks at world history, infrastructure has played an important role in integrating markets across nations even though the use of the word infrastructure is relatively new (Prude'Homme 2005). Adam Smith viewed the provision of infrastructure as a clear obligation of the state and a necessity “for facilitating [com]merce”; at least certain types of infrastructure, such as “good roads, bridges, navigable canals, harbours…” (Smith 1776). Since Smith, however, economists have not always kept such a clear eye on the need for infrastructure investments as a requirement for development. Studies on the linkages of infrastructure to economic growth and development have been sporadic at best, despite the heavy infrastructure investment in the 19th and much of the 20th century. Even during the post-World War II period, when development economics began as a separate branch of economics, infrastructure does not appear much in economic policy discussions. Infrastructure was considered a part of capital, referred as social overhead capital and often lumped together as a source of technological change, largely ignored until the work of David Aschauer in 1989 (Gramlich 1994). Aschauer provided empirical analysis to explain the slowdown in US productivity with the slowdown in infrastructure investments, and Gramlich described Aschauer’s paper as hitting the magic button: “Aschauer’s papers were followed by an unusual amount of attention to infrastructure from politicians and economists.” Since then, there has been a lot of attention to infrastructure in the academic world tracing empirical and theoretical linkages between infrastructure and development.

equipped and congested ports and airports, unreliable communications systems, and grossly inadequate urban infrastructure raise transaction costs, curtail productivity, and often render investments unviable. Thus, efforts to enhance investment in national infrastructure can help accelerate the pace of economic development in many of these economies.

The infrastructure agenda of the East Asian economies—starting with Japan and spreading to the Asian NIEs and middle-income ASEAN members—has been guided by a strategic vision of the top leadership, using coordination and feedback devices within the planning process to implement or realize that vision. Though each of these economies has followed a country-specific approach, one common attribute has been that inherent priorities have been set by the top leadership of each economy. Rapid infrastructure development has been possible because investments were made ahead of infrastructure demand, at times gambling on large infrastructure projects that may have had questionable viability. Thus, providing infrastructure has been closely linked to the objective of spurring industrialization and economic growth. Today, countries such as PRC, Viet Nam, and even India are pursuing this model of infrastructure development.

The unique aspect of the East Asian model is that these economies developed infrastructure as part of their overall strategy of promoting integration with the global and regional economy. Infrastructure was seen as an important enabling factor in the process of globalization until the recent upsurge in the growth of global production networks. Advances in
information and communications technology, and growth of production networks across East Asia, have changed this basic role of infrastructure—from an enabling factor to an important decision variable, as it influences overall costs of production. Multinational firms have various alternatives for investments—options on location or in which country to invest. Hence, infrastructure—both the quality and quantity of its “hardware” and “software” aspects—can change an investor’s overall cost of trade and production. Essentially, cross-border infrastructure can have an immense impact on an economy’s competitiveness by reducing the economic distance from external markets, building economies of scale due to the wider markets, increasing FDI inflows, and expanding trade and economic activity in general.

The recent interest in the multilateral and regional development institutions to support infrastructure development stems from the impact infrastructure investment has, not only on the overall quality of life and poverty reduction, but also on infrastructure governance—infrastructure design and management along with appropriate regulatory frameworks. Though empirical studies are not conclusive about the impact of infrastructure on economic growth and poverty reduction, there is growing recognition of the positive contribution infrastructure lends to these objectives. National and cross-border infrastructure is an important policy instrument for economic development.

II. Lessons from Major Cross-Border Infrastructure in Asia

A nation’s boundaries often impede cross-border trade, investment, and economic integration. Even in the most open economies, domestic trade is much larger than international trade. Several regional initiatives are at various stages of implementation in Asia to promote regional cooperation and greater connectivity. In a sense, the 1997–1998 financial crisis was a turning point for regional cooperation among East Asian economies. Before the crisis, the institutional base and policy initiatives were limited to removal of trade and investment barriers under the auspices of GATT/WTO and APEC, while actual integration was largely driven by the private sector. The growing support for regionalism was due to several factors including: (i) a need to reduce financial vulnerabilities at the regional level; (ii) a need for greater cooperation.

12 Here, regionalism is meant to include formal economic cooperation and integration arrangements covering infrastructure, trade, investment, finance, and various types of regional public goods. See also Kawai 2006.
Box 3: Cross-Border Infrastructure - A Historical Perspective

Archeological evidence points to the exchange of goods between Mesopotamia and the Indian and Chinese territories between 7,500 and 4,000 BC. The Persian Royal Routes, which stretched over some 2,857 kms and was believed to have been in use as early as 3,500 BC, had all the elements of cross-border infrastructure. Rebuilt by the King Darius I and maintained and protected by the Achaemenid empire (c.700-330 BC), the facility had postal stations and relays at regular intervals. By having fresh horses and riders ready at each relay point, royal couriers could carry messages across the entire route in 9 days, though normal travelers took about 3 months. The Roman Empire also had an intricate network of coastal shipping and roads that were used for trade with India and ancient China. As the empire grew, the system was expanded to cover 80,000 kilometers of first class roads about 200 AD. Maintenance of the road system was the responsibility of the inhabitants of the district through which the road passed, but access was public.

Connecting Asia and Europe through the Middle East, the Silk Route stretched over 6,000 kms. It was not a single road, but several alternative trails connecting disparate areas through very difficult terrains and climate zones. Trade along this route involved goods transported by several local caravans in the form of chains and passed through many traders before eventually reaching their final destination. Alongside these caravans, monks and pilgrims traveled spreading knowledge, culture, and religion.

If we compare the Silk Route with today’s production network, the Silk Route also created prosperous clusters of towns and trading posts, complete with the so-called “software” aspects of cross-border infrastructure such as the exchange, distribution, and storage of goods. The Silk Route became a major channel for trade and transfer of technology—it promulgated knowledge-sharing on administrative practices such as standardized weights and measures, a system of numerical notation and identification, labeling commercial goods, and the opening of far-flung colonies. Some historians compare the Silk Route to modern day communications highways.

More recently, Weber (cited in van der Vleuten & Kaijser 2005) suggests that the “transport revolution played a major part not only in the economic but political history of Europe” (see Footnote 11). “Leading politicians in the Ottoman and Soviet empires, the Third Reich, as well as individual nations actively used network technologies to build and strengthen their economies…”(van der Vleuten & Kaijser 2005).

Throughout history, cross-border connectivity has played an important role in the expansion of the global economy. And though historiographies recognize the importance of such linkages, it is only recently that research now focuses on the analytics of infrastructure. The fact still remains that different phases of globalization are tied to a different phases of infrastructure development, connecting regions beyond national boundaries.

Sources: Rodrigue 2006; Voute 2005; and van der Vleuten & Kaijser 2005.

with the PRC, given the country’s emerging dominance in the world and in regional markets; and (iii) the merit of harmonizing policies, regulations, standards, and procedures to enhance the region’s competitiveness. Thus, postcrisis, market-led integration was supplemented by policy-driven cooperation in money and finance, trade and investment, and in the provision of regional public goods. In this context, robust transport and communications links are important building blocks—connecting regional markets by supporting production, trade, and investment.

ADB has supported a number of regional and subregional economic cooperation programs involving infrastructure, both hardware and software aspects—including trade and transit facilitation, policy and regulatory harmonization, and capacity building. In this section, we review four case studies of cross-border infrastructure: (i) the GMS Northern Economic Corridor and Trade and Transit Harmonization; (ii) the Nam Theun 2 Hydropower project; (iii) the Regional Cooperation for Pacific Aviation and Information Communications Technology (ICT); and (iv) the Indonesia–Singapore Gas Transmission program.
Northern Economic Corridor. The GMS program has focused on regional cooperation for strengthening cross-border connectivity. Key activities include development of economic corridors: roads to improve access; institutional and policy support for trade facilitation; and transit policy harmonization to reduce logistics costs across the subregion. Five economic corridors (two North-South, one East-West, and two Southern) were identified and several road investments have begun. Feasibility studies are addressing prospective railway improvements. Trade and transit harmonization is a key element, thus bringing to the GMS program both the hardware and software components of infrastructure development.

The Northern Economic Corridor project (ADB 2002)—which will link Thailand and the PRC via a 228-kilometer road link through the northern and more remote regions of landlocked Lao PDR—was designed to open up economic opportunities across the diverse populations. The trade and transit corridor was estimated to cost US$90 million for both physical investments in building road links and for the components that will benefit local communities along the way. A social action plan with provisions for community roads, small water and sanitation schemes, education, HIV/AIDS awareness programs, and local capacity-building programs for environmental management was an integral part of the project design. These components were planned in a participatory process involving large numbers of ethnic minority groups.

The project was funded using financial and other resources from the two primary beneficiaries—the PRC and Thailand—in partnership with ADB. The role of ADB was multifaceted: (i) ADB helped mobilize financial resources; (ii) it assisted in project design to ensure not only greater regional connectivity, but to also include isolated regions of northern Lao PDR in the process of regional integration; (iii) it assisted Lao PDR as the transit country in negotiations on pricing policies, so maintaining the newly-created assets would not place undue fiscal burden on the country’s finances; (iv) it actively worked to ensure that the distribution of costs and benefits across the three countries was fair—given that the most immediate benefits were expected to accrue to the PRC and Thailand—that is, both countries shared two-thirds of project investments and provided the Lao PDR concessional financing; and (v) it ensured that the

13 Greater Mekong Subregion (GMS) comprises Cambodia, PRC, Lao PDR, Myanmar, Thailand, and Viet Nam.
project adopted a social and environmental management plan to include contracting arrangements that aligned incentives of construction firms to mitigate these risks. Similar projects that seek to coordinate regional infrastructure are underway in the subregion.

Trade and transit harmonization. The three economic corridors in the GMS—North-South, East-West, and Southern—are expected to form a highly efficient transportation system. However, roads no matter how good are of little use if traffic is held up at the borders. Although international conventions exist to address regulatory and procedural barriers to the cross-border movement of people and goods, most GMS members are unable to fully accede to these conventions. Recognizing this, ADB, through its capacity-building efforts, has been working with countries involved to implement an agreement on the cross-border movement of services and goods. These types of support allow people and goods to travel around GMS with minimum impediment, cost, or delay, thereby ensuring that a basic framework is in place to support the economic competitiveness of GMS as an integrated area for production, consumption, and distribution.

The GMS Cross-Border Transport Agreement (CBTA)—which entered into force with the ratification by the six GMS member countries in December 2003—is a multilateral instrument designed to facilitate cross-border transport of people and goods across the subregion. It incorporates the principles of bilateral or multilateral action, and flexibility in recognizing differences in procedures in each GMS country. The agreement includes references to existing international conventions that have demonstrated usefulness across a broad range of countries. It also takes into account, and is consistent with, similar ASEAN initiatives.

The CBTA includes a preamble, with 10 parts and 20 annexes and protocols, that applies to selected and mutually agreed-upon routes and points of entry and exit among the signatory countries along the East-West, North-South, and Southern Economic Corridors to provide (i) single-stop inspection; (ii) cross-border movement (visas) for people engaged in transport operations; (iii) transit traffic regimes, including exemptions from physical customs inspection; (iv) bond deposit, escort, and agriculture and veterinary inspection; (v) requirements that road vehicles will have to meet to qualify as cross-border traffic; (vi) exchange of commercial traffic rights; and (vii) infrastructure, including road and bridge design standards, road signs, and signals.
Nam Theun 2 Hydropower Project

Nam Theun 2 (NT2) is a 1,070-megawatt hydropower project being implemented in Lao PDR that will export most of its power to Thailand (ADB 2004). The $1.2 billion project is a private sector undertaking with multilateral and bilateral financial and other support. For Lao PDR, the NT2 is enormous. It has been under preparation since the mid-1980s. The project has very strong supporters as well as several groups opposing the project. It is not only the largest private power project in Lao PDR, but it is also the largest private sector hydroelectric cross-border project in the world.

The Lao PDR government is the major beneficiary of NT2 and would receive about $1.9 billion over the 25-year operation period from dividend income, royalties, and taxes. The main costs, however, are carried by local communities and the environment around the project area—arising from construction of the dam, flooding of the Nakai Plateau, and downstream effects associated with the interbasin transfer of water from NT2 to the Xe Bang Fai river. Over 70,000 local inhabitants (a part of these ethnic minorities) will be impacted in varying degrees. One of the major issues was how to ensure a fair system of distributing costs and benefits with appropriate compensation to protect those most affected by the project. A total of $90 million has been designated as capital and operating expenditures for environmental and social mitigation and compensation. These obligations are within the concession agreement signed by government and private sector concessionaires. Mechanisms have been developed to address weak accountability arrangements in the public finance management system, in particular, to facilitate more effective and transparent targeting of NT2 revenues toward poverty reduction—including improved education, health, and sustainable livelihood.

An adequate system to monitor and build capacity—support for the government—provided through multilateral and bilateral institutions—are in place to implement a project that is not only a success in terms of producing and trading power, but also in helping Lao PDR further its development agenda of poverty reduction, social development, and economic growth. A key challenge is to ensure that the proposed distribution of costs and benefits between different stakeholders groups is fair and remains on track.
Pacific Cooperation for Aviation and ICT

Regional cooperation means something very different for the island economies of the Pacific, which are by geography small, have fragmented markets, and are isolated physically. Cross-border connectivity is a major challenge as the scope for hard infrastructure to strengthen physical connectivity is limited by geographical dispersion and remoteness. Nonetheless, a strong rationale exists for regional cooperation on the “software” aspects to improve connectivity—through efficient regional aviation, shipping, and information and communications.

Aviation. Aviation in the Pacific involves 43 air transport operators, 266 aircraft, and nearly 4,000 licensed personnel. As a result, capacity for safety and security regulation and oversight is difficult to sustain with small individual markets. Noncompliance with international safety standards and other regulations makes air travel in the Pacific less safe and secure, affecting overall connectivity. Air travel is vital for Pacific economies given the geographical nature of the region and the importance of tourism as an employer and its contribution to GDP.

To establish a strict, rule-based international regulatory environment, a regional agency—the Pacific Aviation Safety Office (PASO)—was formally established. PASO is expected to help reduce overall oversight costs and meet international standards by avoiding duplication, creating economies of scale, harmonizing regulatory systems, and making available scarce technical expertise available as and when needed. An investment program will support PASO’s continuing development to improve aviation safety and security. The program has four components: (i) harmonization of the regulatory environment; (ii) ensuring compliance with international standards; (iii) establishment of a regional inspection and surveillance system; and (iv) upgrading PASO headquarters. The project involves extensive capacity-building, formulation of regulatory and legal frameworks, and adoption of necessary documentation systems. The project is expected to be self-sustaining in 5 years, once revenues match expected costs. It is designed to serve as a model for intergovernmental regional cooperation in the field of regulation services, needed to develop adequate regional transportation infrastructure.

Information and communication technology. For many developed countries, information and communication technology (ICT) provides additional information services over already well-established communications infrastructure. In the Pacific, however, cross-border
ICT—using very small aperture terminal satellite communications (VSAT)—has the potential to radically address two fundamental challenges, distance and small market size. ICT cooperation can aggregate production so that fishing and agriculture cooperatives, for example, can access larger markets, and can bring even very small enterprises such as micro-tourism resorts or agro-tourism to the attention of global audiences. Digital connectivity can thus become a lifeline for isolated island economies to participate in expanding global and regional markets.

Technological solutions—such as multiple-access VSAT technology—allow data from the internet to be beamed down to a multitude of places within the footprint of a given satellite. Users can be located anywhere in the Pacific—on land or sea—and communicate by e-mail, facilitate exchanges between local administration and the central government, and market tourism. And these are but a few applications. Once this or a similar wide-area system is established, it becomes easier to see how the Pacific can capitalize on its vast human and natural resources more effectively.

Strong communications capacity provides a cluster of countries many more opportunities to grow into an integrated region and to thrive on economies of scale—something the Pacific still needs to do. In trade, ICT is important for procurement, exports, or for aggregating national production; whereas in governance, the system could improve local administration, human resource deployment, budgeting, and much more. A wide-area communication network also benefits hospital procurement, disaster management, health alerts, and school research, among other activities. In short, digital connectivity—through effective and inexpensive ICT cooperation across island nations—can become an exciting, new window to the world.

Indonesia–Singapore Gas Transmission

Although a large number of Asian countries have gas resources, the region has yet to develop an integrated cross-border gas network. The Indonesia–Singapore gas pipeline began as a domestic pipeline with ADB funding from various multilateral and bilateral sources. The original project was to construct onshore and offshore pipelines to increase domestic use of gas as a substitute for petroleum and to improve energy efficiency. The project included a set of policies to create an enabling environment for private-sector participation in the gas sector and establish a regulatory framework and supporting institutions for transmission and distribution.
An important policy covenant under the ADB loan was that the state gas company (PT Perusahaan Gas Negara Pesero Terbuka) would partially divest a portion of its equity in the project to a suitable strategic partner to spread economic risks and to introduce world-class operations, maintenance, and financing to Indonesia’s gas sector.

The 1997–1998 financial crisis brought considerable uncertainty to the domestic gas market and, at the same time, delayed securing a strategic investor. In response, and in partnership with ADB, the government formed Transmisi Gas Indonesia in 2002 and, through open competitive bid, divested 40% of its equity to Transasia consortium—comprising Malaysia’s Petronas, Gulf Indonesia, Singapore Petroleum, and Canada’s Talisman Energy. Transasia paid $187.6 million for the 40% equity that included about $58 million toward the cost of extending the Grissik–Battam pipeline to Gissik–Battam–Singapore. The cross-border project is an initial step, not merely in restructuring Indonesia’s gas sector, but in opening the door to the broader goal of establishing a proposed Trans-ASEAN gas pipeline.

Lessons Learned

Most of the lessons drawn from these case studies are specific to the context and circumstances of the individual projects. However, a few generic lessons can be drawn:

- Governments involved in cross-border infrastructure projects need to heighten their role, even if the projects are primarily private sector-driven. Their role can be multifaceted and, in most cases, context-specific—from sharing risks, to creating credible policy regimes, to providing direct or indirect financial support. For example, if high fixed costs, the long life of assets, and space specificity expose cross-border infrastructure to risks due to high “sunk costs”—or unrecoverable past expenditures—governments need to ensure private sector confidence by establishing credible policy regimes.

- In the absence of a single pervasive sovereign jurisdiction, aligning differing interests of two or more nations would require either formal or informal institutional arrangements
aimed at lowering transactions costs and/or to reduce any risk of conflict—such as with the European Commission or the GMS.14

- The presence of multiple constituencies involved in cross-border infrastructure requires capacities and mechanisms to identify the magnitude and distribution of the benefits and costs of cooperation. When costs and benefits between different groups vary dramatically,15 a fair system of distribution needs to be introduced and the issue of incentive compatibility must be addressed—and internalized at the planning and design stage. In the case of cross-border transport projects, sufficient incentives should be provided to any transit country to ensure project success.

- As cross-border infrastructure is subject to transborder externalities—such as the spread of HIV/AIDS, pollution, erosion of social values and cultural identities, and the trafficking of vulnerable groups—appropriate mitigation plans and adequate financial and technical resources are required. Bridging shared history, cultural values, norms, and creating cohesiveness based on ethnic identity can make cross-border infrastructure projects build trust across ethnic divides—an essential element for any successful regional cooperation.16

- Finally, in almost all cases, planning and preparation costs are high. Some projects would require up-front external financial and other support to be successful.

III. A Framework for Cross-Border Infrastructure

In Asia, given the rapid growth of regional economic activities, trade, and investment, cross-border infrastructure has become an important building block of regional economic integration in the age of globalization. Many cross-border infrastructure initiatives are specifically directed at facilitating cross-border trade through reduction in overall transport and logistics costs. There are also many examples where cross-border infrastructure has helped improve connectivity in a country or has changed the market structure of domestic sectors.

14International arbitration offers a solution to this problem, but recourse to this option must be agreed upon and adhered to \textit{a priori}.

15Often the costs and benefits in regional projects are distributed asymmetrically across countries and across groups within each country.

16In the GMS program, cross-border infrastructure was found to be a crucial building block in developing cultural capital to reap the so-called “peace dividend,” expand markets, and exploit economic opportunities in transborder regions. It also provided a means for smaller nations to become relevant in the process of globalization.
Except in the EU, which has well-defined rules on market integration to support cross-border infrastructure, these projects are usually planned and designed on a bilateral basis. In some cases, individual project negotiations have worked well. For example, Scandinavian countries have interchanged as much as 7% of total subregional power generation based solely on a “gentlemen’s agreement.” Though in theory, project-to-project cooperation between governments for mutual benefit should work without requiring a formalized institutional or legal framework, in reality this approach often involves high transactions costs, high failure rates, or long lead times. A project-to-project approach does not follow a single, integrated framework for planning and designing projects. In this section, we propose a framework for planning and designing cross-border infrastructure in three dimensions: political, economic and financial, and institutional and software. Most of these dimensions need to be addressed to ensure successful cross-border infrastructure results.

Political

Infrastructure often has a political angle and cross-border infrastructure even more so, because it invariably raises foreign policy issues. More often than not, a cross-border infrastructure project, policy, or program is used to promote or hinder a government’s foreign policy goals. In this sense, any cross-border infrastructure project requires strong political leadership at the national level, a strategic vision based on shared priorities for regional integration and development, and political commitment to this bilateral or multilateral coordination.

First, several levels of governments are often involved in planning, designing and coordinating cross-border infrastructure. Even within a country, different perceptions exist among the central planner and local governments and users about the value of cross-border infrastructure. This can lead to problems of mismatches in prioritization and resource allocation. For example, local governments may have a greater stake in connectivity with neighboring countries than the central government does. The highest political leadership must set a clear strategic vision for national and cross-border infrastructure in order to resolve such mismatches at the national level.

Second, there is a need to develop sufficient mutual trust and goodwill between governments involved in the project. As multiple constituencies are often involved in cross-
border infrastructure, institutional mechanisms are needed to sort out the true objectives of cooperation and to resolve any obstacles. This can be done either through formal institutions (such as the EU) or, as is the case in many Asian groups, through informal political consensus to create such collaborative arrangements. Whichever approach is taken, governments need to make political efforts to develop mutual trust and build consensus among them in various ways—through joint studies, dialogue, interactions of politicians, experts, news media, and citizens.

Finally, a strong political commitment to international coordination for cross-border infrastructure can also reduce overall external risks. Governments involved need to collectively ensure that the underlying policy environment supports cross-border infrastructure, particularly when the project undertaken involves the private sector. Strong political commitment to coordinate using a multilateral framework can make it difficult for individual governments to unilaterally renegade on the terms of an agreement under which the infrastructure is supplied, as the other parties naturally would also have an interest in enforcing the agreement. Hence, transparent and predictable governance structures and institutional arrangements for infrastructure projects would reduce overall risks and enhance project feasibility.

Economic and Financial

Benefits from better connectivity through cross-border infrastructure—in the form of reducing logistics costs, trade expansion, economic growth, and poverty reduction—tend to be indirect and long term, whereas costs tend to be incurred immediately and up front. These benefits are often asymmetric across countries, making it difficult to agree on the appropriate distribution of costs. These can raise doubts over resource allocation, especially for high profile projects. Hence, economic and financial feasibility and distributional consequences need to be carefully studied and well-established. This is particularly the case as, more often than not, political leaders announce cross-border infrastructure projects without undertaking the necessary economic and financial analyses beforehand.

First, cross-border infrastructure projects should be planned and designed within the overall medium-term development strategy of each of the countries involved and at the same time identified within a regional sector planning framework. This framework should not only apply existing tools for sector planning (in terms of least-cost planning), but also require an
institutional arrangement for effective regional policy coordination—including both strategic discussions at a high official level and technical consultations at the working level.17

Second, economic and financial analyses of projects identified within a regional sector planning framework are important for any infrastructure, but more so for cross-border infrastructure—given the capital intensities, complex structures of costs and benefits, regional public goods attributes, and long-term, indirect impacts. More often, cross-border infrastructure involves various groups of stakeholders across national boundaries, and those groups that bear the greatest costs are not necessarily those that enjoy the greatest benefits from the project. With this in mind, a detailed distribution analysis would be necessary to assess the project impact.

Third, an appropriate institutional mechanism needs to be designed to ensure that those stakeholder groups affected unfavorably by cross-border infrastructure projects would be compensated fairly.18 Such an assurance is crucial to ensure a fair system of distribution and obtain support from less powerful countries, regions, or groups.

\textit{Institutional and Software}

Institutional and software components are as important in cross-border infrastructure as the physical (or hardware) components. For any hard infrastructure facilities to work, well-designed institutional and software support is essential, and this is more so for cross-border infrastructure due to the involvement of multiple constituencies and the associated negative and/or positive externalities. Developing a relevant institutional and software agenda for cross-border infrastructure can be complex because no single legal or policy jurisdiction exists and the agenda often involves a large number of issues.

First, successful cross-border infrastructure requires institutional arrangements, formal or informal, that will help reach an optimum outcome arising from cooperation as opposed to independently chosen suboptimal outcomes. Technocratic cooperation is the most critical

17 For example, within GMS, a broad hierarchy of institutional arrangements exists to prepare subregional strategies. There are working groups for energy and transport at ministerial levels, supported by a number of other institutional arrangements for coordinating work at technical level.

18 It was found that in the Northern Economic Corridor, for example, the benefits would largely accrue to the PRC and Thailand while Lao PDR would have to pay large economic and social costs. It was therefore very important to ensure that interests of pure transit countries—like Lao PDR—were ensured when structuring the project finance.
element. Institutional requirements for coordination vary depending on how complex a sector is—for example, the technical complexity of a cross-border road project is relatively low (primarily agreements on design standards and road signage at the construction stage) as opposed to an electricity project (for which an agreement on technical standards is essential for both construction and operation). Again, the issue of the asymmetric distribution of costs and benefits between different stakeholders needs to be addressed at the planning and design stage. Thus, sector-specific institutions will be needed for detailed planning, design, coordination and financial arrangements in any cross-border infrastructure.

Second, it is important to design institutions in a way to provide incentives for long-term success. This is particularly true when costs and benefits of cross-border infrastructure projects vary drastically between different groups. Cross-border projects need to ensure to align incentives and financing arrangements in a way that participating countries can all benefit from the projects.

Third, the strong need for planning and coordination for cross-border infrastructure requires a systematic institutional arrangement, whether formal or informal. Though in theory, *ad hoc* institutional and technocratic coordination and negotiations between governments on a project-to-project basis should work well without a formalized institutional or legal framework, in reality this approach has had high failure rates and long lead times, thereby significantly raising transactions costs and making such collaborations infeasible. Strong institutional coordination helps to minimize such costs. Hence, a systematic, comprehensive, institutionalized approach is essential for success.

Finally, harmonizing regulatory, procedural, and technical standards, and environmental, social and other safeguard requirements all help reduce risks and lower transactions costs for cross-border infrastructure. Hence resources are clearly needed for investing in such “software” aspects—particularly for strengthening local capacity and building consensus.

19 For example, in NT2, compensation for environment and social impacts was built into the design of the project and became part of the contracting arrangements.
IV. Conclusion: The Future of Cross-Border Infrastructure in Asia

The future of the Asian region—its overall performance in terms of economic growth and poverty reduction—is closely tied to its ability to reap benefits from regional economic integration. Though logistics have not as yet become a serious constraint, we have seen that action will be required to enhance both the quality and quantity of infrastructure to improve overall efficiency. Growing cross-border economic activities in Asia have important implications for the demand for infrastructure development in the region. Infrastructure needs for feeder seaports and logistics services, among others, will continue to rise rapidly.

With the emergence of the PRC and India as important destinations for exports and sources of imports, cross-border connectivity with different regions of the PRC and India features prominently in Asia’s infrastructure development plans. For the neighboring economies in Southeast Asia, South Asia, and Central Asia, export-related transport and logistics will be particularly important, especially those geared toward serving the PRC and/or Indian markets. For poorer countries and poorer areas within a country where infrastructure is a major constraint to expanding economic opportunities, improved access to larger regional markets will be key to economic success. The efficiency of cross-border infrastructure connectivity will be an important determinant of a country’s prospects for economic growth, employment creation, poverty reduction, and social improvement.

Through greater investment in logistics and infrastructure, Asia can further strengthen overall productivity and competitiveness. As Asia’s existing cross-border linkages are inadequate, the region can gain more from improved connectivity—such as cross-border transport corridors on land and a series of feeder ports and regional hubs—for promoting exports and imports. This can happen by improving overall efficiency: new construction, rehabilitation, upgrading, and modernization of infrastructure services, equipment, and facilities; capacity building for asset management and maintenance; coordination of cross-border services, harmonization of regulations, procedures and standards; and trade and customs facilitation.

Various stakeholders need to work together to ensure success in this difficult area. The following section outlines an agenda for moving forward for the Asian governments, the private sector, civil society groups, and multilateral institutions such as ADB.
Governments

Asian governments need to play an increasingly important role in cross-border infrastructure, even when projects are in the private sector. This includes planning at the regional level, coordinating policies and procedures, creating credible legal and regulatory policy regimes, strengthening infrastructure governance (transparency and accountability in financial management), and risk sharing. Cross-border infrastructure requires harmonization of rules and regulations covering the environment and social aspects, and policy regimes for private sector participation. Asian governments can do several things to ensure these are taken into account:

First, candidate projects and programs for cross-border infrastructure should be identified to enhance the region’s trade and integration agenda. Strong political leadership is needed to support such cross-border infrastructure arising from a vision of regional cooperation and integration based on improvements in transport and logistics efficiency and market expansion for the entire region. Asian governments need to reorient existing partnerships to deliver greater regional connectivity.

Second, Asian governments should integrate cross-border infrastructure projects and programs into their countries’ own development plans to demonstrate their willingness and commitment to support such initiatives. They could then establish institutional arrangements to support collaborative cross-border infrastructure projects for technical coordination, legal and regulatory coordination, and sharing risks that are inevitable in such projects and programs. It is important for governments to develop a strong, credible partnership, based on mutual trust.

Finally, Asian governments could strengthen their collective work to mobilize a large pool of regional savings for “bankable” regional infrastructure investment. Strengthening national and regional bond markets—though such initiatives as the Asian Bond Markets Initiative and the Asian Bond Fund—is one of the first steps in creating a viable source of infrastructure financing to tap these Asian savings. At the same time, governments can make joint efforts to help create “bankable” projects through concerted national reforms to improve policy and regulatory environments and infrastructure governance.
Private Sector

Though the role of the private sector in cross-border infrastructure has been somewhat opportunistic, the sector has brought real “additionality.” Several successful cross-border infrastructure projects demonstrate that where relationships are governed purely by commercial considerations, differences are more easily resolved. Given the public sector’s resource constraints, the private sector will have to play an increasingly important role in cross-border infrastructure. There are substantial financial rewards to be derived from regional and/or subregional cooperation in such sectors as energy, telecommunications, and transport. The private sector is expected to play a critical role in this process.

First, the private sector can bring additional financial and technical resources for cross-border infrastructure. Together with the governments and other development partners, it can undertake commercially viable cross-border infrastructure investments with an acceptable risk profile.

Second, the private sector can provide the enormous resources needed for improving cross-border connectivity, through national and cross-border infrastructure investment projects. To dispel the past perception that these partnerships are often somewhat opportunistic and not based on mutual trust, the private sector should be encouraged to act as a reliable and dependable partner. It needs to develop a long-term view of the return and rewards—as infrastructure projects and concessions are long-term business ventures.

Finally, there is no better strategy for risk sharing than to reduce the overall risk for the project; hence, due market and financial diligence remains fundamental to a successful cross-border infrastructure.

Civil Society

Most cross-border infrastructure projects and programs are high-profile investments, and often civil society organizations are critical of them or even opposed to them. There are several reasons for this. First, they often share serious concerns regarding the environmental and social costs associated with large infrastructure projects or programs. Second, the asymmetric distribution of costs and benefits among stakeholder groups induces them to pay greater attention to those affected people who bear the brunt of costs in terms of loss of land, property, and
livelihood, rather than the majority of people who benefit. Third, unlike national projects or programs, cross-border projects involve no single jurisdiction and hence are hard to ensure a fair system of compensation and processes. In our view, civil society organizations have a useful and constructive role to play in enhancing the overall outcome.

Most importantly, civil society can provide a rigorous system of screening and monitoring cross-border infrastructure to ensure that transparent processes are put in place for project planning, design and implementation, and for a fair distribution of costs and benefits between different groups of stakeholders. In this way, civil society can make a significant difference by giving an effective voice to stakeholders who have been adversely affected by, and have not benefited from, the projects.

Multilateral Institutions

Regional connectivity is essentially a public good with high externalities. Hence, multilateral institutions have a crucial role to play in cross-border infrastructure projects. In the EU, financial instruments are available to identify and design cross-border projects, so as to develop a large internal market and strengthen intraregional connectivity and regional competitiveness. The European Community Budget finances part of these costs using “structural funds” at below market rates—involving some form of subsidy to promote cross-border infrastructure—and the European Investment Bank plays a significant role in funding the projects. In the GMS, ADB has provided sponsorship support in financial resources and capacity building through its technical assistance program. Multilateral institutions like ADB can play a special role in ensuring that cross-border infrastructure complements the work being done by local governments and other stakeholders in all areas identified in the framework and actually help in the process of integration, regionally and as part of the larger globalization process.

Thus the role of multilateral institutions in cross-border infrastructure is multifaceted. First, as financier, multilateral institutions can provide loans and other risk mitigation instruments such as guarantees and help in mobilizing resources from other development partners, including the private sector. Second, multilateral institutions can be a knowledge partner and a technical adviser that can provide expert advice, share lessons learned regionally and globally, and tailor knowledge to the specific needs and conditions in the countries involved.
Third, as capacity builder, multilateral institutions can help developing countries and regional and/or subregional bodies strengthen their institutional and human capacity to manage cross-border infrastructure—particularly for strengthening infrastructure governance (e.g., financial management) and for supporting “software” and institutional aspects. Finally, and perhaps most importantly, as honest broker, multilateral institutions can play a catalytic role in cross-border infrastructure projects, bringing countries and other stakeholders together impartially and facilitating the dialogue and discussion process so that countries can reach political convergence to strengthen cross-border connectivity.

Financial and technical appraisals would be multilateral institutions’ important inputs, but so are environmental and social appraisals to ensure the mitigation of negative impacts and a fair distribution of costs and benefits between different stakeholder groups in the project design. Many regions have also benefited from specialized funds to support the identification, design, planning, and even financing of such projects. The success of the GMS program can be attributed, in large measure, to ADB’s sponsorship of financial and other technical resources that supported the collective processes.
References

